Hi,
Can you release your training model config file for reference?
Because I use netron check my model is only one output.
But your excellent model have six output.
Have you done any other processing on the model?
Following text is my training config file.
# nanodet-EfficientNet-Lite1_416
save_dir: workspace/RepVGG-A0-416
model:
arch:
name: OneStageDetector
backbone:
name: RepVGG
arch: A0
out_stages: [2,3,4]
activation: ReLU
last_channel: 512
deploy: False
fpn:
name: PAN
in_channels: [96, 192, 512]
out_channels: 128
start_level: 0
num_outs: 3
head:
name: NanoDetHead
num_classes: 1
conv_type: Conv
input_channel: 128
feat_channels: 128
stacked_convs: 2
activation: ReLU
share_cls_reg: True
octave_base_scale: 8
scales_per_octave: 1
strides: [8, 16, 32]
reg_max: 10
norm_cfg:
type: BN
loss:
loss_qfl:
name: QualityFocalLoss
use_sigmoid: True
beta: 2.0
loss_weight: 1.0
loss_dfl:
name: DistributionFocalLoss
loss_weight: 0.25
loss_bbox:
name: GIoULoss
loss_weight: 2.0
data:
train:
name: CocoDataset
img_path: /nfs/Workspace/dataset/mscoco/images/train2017
ann_path: /nfs/Workspace/dataset/mscoco/annotations/annotations/instances_train2017_person.json
input_size: [416,416] #[w,h]
keep_ratio: True
pipeline:
perspective: 0.0
scale: [0.5, 1.5]
stretch: [[1, 1], [1, 1]]
rotation: 0
shear: 0
translate: 0.2
flip: 0.5
brightness: 0.2
contrast: [0.6, 1.4]
saturation: [0.5, 1.2]
normalize: [[103.53, 116.28, 123.675], [57.375, 57.12, 58.395]]
val:
name: CocoDataset
img_path: /nfs/Workspace/dataset/mscoco/images/val2017
ann_path: /nfs/Workspace/dataset/mscoco/annotations/annotations/instances_val2017_person.json
input_size: [416,416] #[w,h]
keep_ratio: True
pipeline:
normalize: [[103.53, 116.28, 123.675], [57.375, 57.12, 58.395]]
device:
gpu_ids: [0]
workers_per_gpu: 1
batchsize_per_gpu: 100
schedule:
# resume:
# load_model: YOUR_MODEL_PATH
optimizer:
name: SGD
lr: 0.07
momentum: 0.9
weight_decay: 0.0001
warmup:
name: linear
steps: 500
ratio: 0.01
total_epochs: 170
lr_schedule:
name: MultiStepLR
milestones: [130,150,160,165]
gamma: 0.1
val_intervals: 5
evaluator:
name: CocoDetectionEvaluator
save_key: mAP
log:
interval: 10
class_names: ['person']
And this is my model architecture output

Here is the model architecture output you provided

Please help! Thanks a lot!