Pose-tensorflow - Human Pose estimation with TensorFlow framework

Overview

Human Pose Estimation with TensorFlow

Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and ArtTrack papers:

Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres, Mykhaylo Andriluka and Bernt Schiele DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model. In European Conference on Computer Vision (ECCV), 2016

Eldar Insafutdinov, Mykhaylo Andriluka, Leonid Pishchulin, Siyu Tang, Evgeny Levinkov, Bjoern Andres and Bernt Schiele ArtTrack: Articulated Multi-person Tracking in the Wild. In Conference on Computer Vision and Pattern Recognition (CVPR), 2017

For more information visit http://pose.mpi-inf.mpg.de

Prerequisites

The implementation is in Python 3 and TensorFlow. We recommended using conda to install the dependencies. First, create a Python 3.6 environment:

conda create -n py36 python=3.6
conda activate py36

Then, install basic dependencies with conda:

conda install numpy scikit-image pillow scipy pyyaml matplotlib cython

Install TensorFlow and remaining packages with pip:

pip install tensorflow-gpu easydict munkres

When running training or prediction scripts, please make sure to set the environment variable TF_CUDNN_USE_AUTOTUNE to 0 (see this ticket for explanation).

If your machine has multiple GPUs, you can select which GPU you want to run on by setting the environment variable, eg. CUDA_VISIBLE_DEVICES=0.

Demo code

Single-Person (if there is only one person in the image)

# Download pre-trained model files
$ cd models/mpii
$ ./download_models.sh
$ cd -

# Run demo of single person pose estimation
$ TF_CUDNN_USE_AUTOTUNE=0 python3 demo/singleperson.py

Multiple People

# Compile dependencies
$ ./compile.sh

# Download pre-trained model files
$ cd models/coco
$ ./download_models.sh
$ cd -

# Run demo of multi person pose estimation
$ TF_CUDNN_USE_AUTOTUNE=0 python3 demo/demo_multiperson.py

Training models

Please follow these instructions

Citation

Please cite ArtTrack and DeeperCut in your publications if it helps your research:

@inproceedings{insafutdinov2017cvpr,
    title = {ArtTrack: Articulated Multi-person Tracking in the Wild},
    booktitle = {CVPR'17},
    url = {http://arxiv.org/abs/1612.01465},
    author = {Eldar Insafutdinov and Mykhaylo Andriluka and Leonid Pishchulin and Siyu Tang and Evgeny Levinkov and Bjoern Andres and Bernt Schiele}
}

@article{insafutdinov2016eccv,
    title = {DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model},
    booktitle = {ECCV'16},
    url = {http://arxiv.org/abs/1605.03170},
    author = {Eldar Insafutdinov and Leonid Pishchulin and Bjoern Andres and Mykhaylo Andriluka and Bernt Schiele}
}
Comments
  • Issue with demo - ValueError: scale cannot be an integer: False

    Issue with demo - ValueError: scale cannot be an integer: False

    I am using latest dev branch of tensorflow and getting into this issue.

    zangetsu@nunik ~/proj/pose-tensorflow $ TF_CUDNN_USE_AUTOTUNE=0 python3 demo/singleperson.py
    Traceback (most recent call last):
      File "demo/singleperson.py", line 17, in <module>
        sess, inputs, outputs = predict.setup_pose_prediction(cfg)
      File "demo/../nnet/predict.py", line 11, in setup_pose_prediction
        outputs = pose_net(cfg).test(inputs)
      File "demo/../nnet/pose_net.py", line 90, in test
        heads = self.get_net(inputs)
      File "demo/../nnet/pose_net.py", line 86, in get_net
        net, end_points = self.extract_features(inputs)
      File "demo/../nnet/pose_net.py", line 54, in extract_features
        with slim.arg_scope(resnet_v1.resnet_arg_scope(False)):
      File "/usr/lib64/python3.4/site-packages/tensorflow/contrib/slim/python/slim/nets/resnet_utils.py", line 257, in resnet_arg_scope
        weights_regularizer=regularizers.l2_regularizer(weight_decay),
      File "/usr/lib64/python3.4/site-packages/tensorflow/contrib/layers/python/layers/regularizers.py", line 92, in l2_regularizer
        raise ValueError('scale cannot be an integer: %s' % (scale,))
    ValueError: scale cannot be an integer: False
    
    

    As this is new for me I have not much idea how to resolve...

    opened by archenroot 12
  • F tensorflow/python/lib/core/bfloat16.cc:664] Check failed: PyBfloat16_Type.tp_base != nullptr      Aborted

    F tensorflow/python/lib/core/bfloat16.cc:664] Check failed: PyBfloat16_Type.tp_base != nullptr Aborted

    So when running the test.py code, I get this error:

        [jalal@goku pose-tensorflow]$ TF_CUDNN_USE_AUTOTUNE=0 python demo/demo_multiperson.py
        RuntimeError: module compiled against API version 0xc but this version of numpy is 0xb
        ImportError: numpy.core.multiarray failed to import
        ImportError: numpy.core.umath failed to import
        ImportError: numpy.core.umath failed to import
        2018-04-08 17:09:02.321666: F tensorflow/python/lib/core/bfloat16.cc:664] Check failed: PyBfloat16_Type.tp_base != nullptr 
        Aborted
    
    

    The test.py code is:

      import argparse
       import logging
       import os
    
       import numpy as np
       import scipy.io
       import scipy.ndimage
       
       from config import load_config
       from dataset.factory import create as create_dataset
       from dataset.pose_dataset import Batch
       from nnet.predict import setup_pose_prediction, extract_cnn_output, argmax_pose_predict
       from util import visualize
       
       
       def test_net(visualise, cache_scoremaps):
           logging.basicConfig(level=logging.INFO)
       
           cfg = load_config()
           dataset = create_dataset(cfg)
           dataset.set_shuffle(False)
           dataset.set_test_mode(True)
       
           sess, inputs, outputs = setup_pose_prediction(cfg)
       
           if cache_scoremaps:
               out_dir = cfg.scoremap_dir
               if not os.path.exists(out_dir):
                   os.makedirs(out_dir)
       
           num_images = dataset.num_images
           predictions = np.zeros((num_images,), dtype=np.object)
       
           for k in range(num_images):
               print('processing image {}/{}'.format(k, num_images-1))
       
               batch = dataset.next_batch()
       
               outputs_np = sess.run(outputs, feed_dict={inputs: batch[Batch.inputs]})
       
               scmap, locref, pairwise_diff = extract_cnn_output(outputs_np, cfg)
       
               pose = argmax_pose_predict(scmap, locref, cfg.stride)
       
               pose_refscale = np.copy(pose)
               pose_refscale[:, 0:2] /= cfg.global_scale
               predictions[k] = pose_refscale
       
               if visualise:
                   img = np.squeeze(batch[Batch.inputs]).astype('uint8')
                   visualize.show_heatmaps(cfg, img, scmap, pose)
                   visualize.waitforbuttonpress()
       
               if cache_scoremaps:
                   base = os.path.basename(batch[Batch.data_item].im_path)
                   raw_name = os.path.splitext(base)[0]
                   out_fn = os.path.join(out_dir, raw_name + '.mat')
                   scipy.io.savemat(out_fn, mdict={'scoremaps': scmap.astype('float32')})
       
                   out_fn = os.path.join(out_dir, raw_name + '_locreg' + '.mat')
                   if cfg.location_refinement:
                       scipy.io.savemat(out_fn, mdict={'locreg_pred': locref.astype('float32')})
       
           scipy.io.savemat('predictions.mat', mdict={'joints': predictions})
       
           sess.close()
       
       
       if __name__ == '__main__':
           parser = argparse.ArgumentParser()
           parser.add_argument('--novis', default=False, action='store_true')
           parser.add_argument('--cache', default=False, action='store_true')
           args, unparsed = parser.parse_known_args()
       
           test_net(not args.novis, args.cache)
    

    I have the followings:

      $ conda list tensorflow
       # packages in environment at /scratch/sjn/anaconda:
       #
       tensorflow                1.5.0                    py36_0    conda-forge
       tensorflow-gpu            1.3.0                         0  
       tensorflow-gpu-base       1.3.0           py36cuda8.0cudnn6.0_1  
       tensorflow-tensorboard    0.1.5                    py36_0  
    
    

    and

    $ conda list numpy
      # packages in environment at /scratch/sjn/anaconda:
      #
      msgpack-numpy             0.4.1                     <pip>
      numpy                     1.13.3          py36_blas_openblas_201  [blas_openblas]  conda-forge
      numpydoc                  0.7.0            py36h18f165f_0  
    
    
    opened by monajalal 8
  • Run single person demo with error ...

    Run single person demo with error ...

    Hi,

    I just follow the step to have a trial on the "single person" with the following step :


    Download pre-trained model files

    $ cd models/mpii $ ./download_models.sh $ cd -

    Run demo of single person pose estimation

    $ TF_CUDNN_USE_AUTOTUNE=0 python demo/singleperson.py


    However, it shows the error from python interpreter :


    Traceback (most recent call last): File "demo/singleperson.py", line 9, in from nnet import predict ImportError: No module named nnet


    How can I fix it ?

    Thanks.

    opened by ckl8964 8
  • I got a “out of range error”,please help me

    I got a “out of range error”,please help me

    I got this problem

    2018-01-25 17:50:33.199858: W tensorflow/core/framework/op_kernel.cc:1192] Out of range: Read less bytes than requested 2018-01-25 17:50:33.200658: W tensorflow/core/framework/op_kernel.cc:1192] Out of range: Read less bytes than requested 2018-01-25 17:50:33.210929: W tensorflow/core/framework/op_kernel.cc:1192] Out of range: Read less bytes than requested Traceback (most recent call last): File "/home/wzh/anaconda2/envs/python3/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1323, in _do_call return fn(*args) File "/home/wzh/anaconda2/envs/python3/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1302, in _run_fn status, run_metadata) File "/home/wzh/anaconda2/envs/python3/lib/python3.5/site-packages/tensorflow/python/framework/errors_impl.py", line 473, in exit c_api.TF_GetCode(self.status.status)) tensorflow.python.framework.errors_impl.OutOfRangeError: Read less bytes than requested [[Node: save/RestoreV2_523 = RestoreV2[dtypes=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save/Const_0_0, save/RestoreV2_523/tensor_names, save/RestoreV2_523/shape_and_slices)]]

    During handling of the above exception, another exception occurred:

    Traceback (most recent call last): File "demo/singleperson.py", line 17, in sess, inputs, outputs = predict.setup_pose_prediction(cfg) File "/home/wzh/pose-tensorflow/nnet/predict.py", line 24, in setup_pose_prediction restorer.restore(sess, cfg.init_weights) File "/home/wzh/anaconda2/envs/python3/lib/python3.5/site-packages/tensorflow/python/training/saver.py", line 1666, in restore {self.saver_def.filename_tensor_name: save_path}) File "/home/wzh/anaconda2/envs/python3/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 889, in run run_metadata_ptr) File "/home/wzh/anaconda2/envs/python3/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1120, in _run feed_dict_tensor, options, run_metadata) File "/home/wzh/anaconda2/envs/python3/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1317, in _do_run options, run_metadata) File "/home/wzh/anaconda2/envs/python3/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1336, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.OutOfRangeError: Read less bytes than requested [[Node: save/RestoreV2_523 = RestoreV2[dtypes=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save/Const_0_0, save/RestoreV2_523/tensor_names, save/RestoreV2_523/shape_and_slices)]]

    Caused by op 'save/RestoreV2_523', defined at: File "demo/singleperson.py", line 17, in sess, inputs, outputs = predict.setup_pose_prediction(cfg) File "/home/wzh/pose-tensorflow/nnet/predict.py", line 14, in setup_pose_prediction restorer = tf.train.Saver() File "/home/wzh/anaconda2/envs/python3/lib/python3.5/site-packages/tensorflow/python/training/saver.py", line 1218, in init self.build() File "/home/wzh/anaconda2/envs/python3/lib/python3.5/site-packages/tensorflow/python/training/saver.py", line 1227, in build self._build(self._filename, build_save=True, build_restore=True) File "/home/wzh/anaconda2/envs/python3/lib/python3.5/site-packages/tensorflow/python/training/saver.py", line 1263, in _build build_save=build_save, build_restore=build_restore) File "/home/wzh/anaconda2/envs/python3/lib/python3.5/site-packages/tensorflow/python/training/saver.py", line 751, in _build_internal restore_sequentially, reshape) File "/home/wzh/anaconda2/envs/python3/lib/python3.5/site-packages/tensorflow/python/training/saver.py", line 427, in _AddRestoreOps tensors = self.restore_op(filename_tensor, saveable, preferred_shard) File "/home/wzh/anaconda2/envs/python3/lib/python3.5/site-packages/tensorflow/python/training/saver.py", line 267, in restore_op [spec.tensor.dtype])[0]) File "/home/wzh/anaconda2/envs/python3/lib/python3.5/site-packages/tensorflow/python/ops/gen_io_ops.py", line 1021, in restore_v2 shape_and_slices=shape_and_slices, dtypes=dtypes, name=name) File "/home/wzh/anaconda2/envs/python3/lib/python3.5/site-packages/tensorflow/python/framework/op_def_library.py", line 787, in _apply_op_helper op_def=op_def) File "/home/wzh/anaconda2/envs/python3/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 2956, in create_op op_def=op_def) File "/home/wzh/anaconda2/envs/python3/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 1470, in init self._traceback = self._graph._extract_stack() # pylint: disable=protected-access

    OutOfRangeError (see above for traceback): Read less bytes than requested [[Node: save/RestoreV2_523 = RestoreV2[dtypes=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save/Const_0_0, save/RestoreV2_523/tensor_names, save/RestoreV2_523/shape_and_slices)]]

    I dont know is there something wrong with downloaded model? @eldar @andreas-eberle

    opened by luoyangtractor 7
  • saveRestore issue?

    saveRestore issue?

    Hi, thank you for the awesome library, I have a question about an error I am getting "occasionally" when running the demo/singleperson.py file. Every other time or every third time it runs I get the following issue below. I have read that it has to do with saveRestore and changing variables, but not quite sure how to resolve or if anyone else is having this issue: Thanks!

    Here is the trace error:

    Traceback (most recent call last):
      File "demo/detect.py", line 164, in <module>
        sess, inputs, outputs = predict.setup_pose_prediction(cfg)
      File "demo/../nnet/predict.py", line 17, in setup_pose_prediction
        restorer.restore(sess, cfg.init_weights)
      File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/training/saver.py", line 1548, in restore
        {self.saver_def.filename_tensor_name: save_path})
      File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 789, in run
        run_metadata_ptr)
      File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 997, in _run
        feed_dict_string, options, run_metadata)
      File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1132, in _do_run
        target_list, options, run_metadata)
      File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1152, in _do_call
        raise type(e)(node_def, op, message)
    tensorflow.python.framework.errors_impl.FailedPreconditionError: models/mpii/mpii-single-resnet-101.index
    	 [[Node: save/RestoreV2_186 = RestoreV2[dtypes=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/cpu:0"](_arg_save/Const_0_0, save/RestoreV2_186/tensor_names, save/RestoreV2_186/shape_and_slices)]]
    
    Caused by op 'save/RestoreV2_186', defined at:
      File "demo/detect.py", line 164, in <module>
        sess, inputs, outputs = predict.setup_pose_prediction(cfg)
      File "demo/../nnet/predict.py", line 9, in setup_pose_prediction
        restorer = tf.train.Saver()
      File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/training/saver.py", line 1139, in __init__
        self.build()
      File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/training/saver.py", line 1170, in build
        restore_sequentially=self._restore_sequentially)
      File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/training/saver.py", line 691, in build
        restore_sequentially, reshape)
      File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/training/saver.py", line 407, in _AddRestoreOps
        tensors = self.restore_op(filename_tensor, saveable, preferred_shard)
      File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/training/saver.py", line 247, in restore_op
        [spec.tensor.dtype])[0])
      File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/gen_io_ops.py", line 640, in restore_v2
        dtypes=dtypes, name=name)
      File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/op_def_library.py", line 767, in apply_op
        op_def=op_def)
      File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 2506, in create_op
        original_op=self._default_original_op, op_def=op_def)
      File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 1269, in __init__
        self._traceback = _extract_stack()
    
    FailedPreconditionError (see above for traceback): models/mpii/mpii-single-resnet-101.index
    	 [[Node: save/RestoreV2_186 = RestoreV2[dtypes=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/cpu:0"](_arg_save/Const_0_0, save/RestoreV2_186/tensor_names, save/RestoreV2_186/shape_and_slices)]]
    
    
    opened by trops 5
  • Error in

    Error in "preprocess_single"

    Hi,

    I got the following error message when running "preprocess_single":

    .................................................................................................... 13900/15247 .................................................................................................... 14000/15247 .................................................................................................... 14100/15247 .................................................................................................... 14200/15247 .................................................................................................... 14300/15247 .................................................................................................... 14400/15247 .................................................................................................... 14500/15247 .................................................................................................... 14600/15247 .................................................................................................... 14700/15247 .................................................................................................... 14800/15247 .................................................................................................... 14900/15247 .................................................................................................... 15000/15247 .................................................................................................... 15100/15247 .................................................................................................... 15200/15247 ............................................... done crop_data() bTrain: 1 refHeight: 400 deltaCrop: 65 bSingle: 0 bCropIsolated: 0 bMulti: 0 bObjposOffset: 1 .................................................................................................... 100/3586 .................................................................................................... 200/3586 .................................................................................................... 300/3586 .................................................................................................... 400/3586 .................................................................................................... 500/3586 .................................................................................................... 600/3586 .................................................................................................... 700/3586 .................................................................................................... 800/3586 .................................................................................................... 900/3586 .................................................................................................... 1000/3586 .................................................................................................... 1100/3586 .................................................................................................... 1200/3586 .................................................................................................... 1300/3586 .................................................................................................... 1400/3586 .................................................................................................... 1500/3586 .................................................................................................... 1600/3586 .................................................................................................... 1700/3586 .................................................................................................... 1800/3586 .................................................................................................... 1900/3586 .................................................................................................... 2000/3586 .................................................................................................... 2100/3586 .................................................................................................... 2200/3586 .................................................................................................... 2300/3586 .................................................................................................... 2400/3586 .................................................................................................... 2500/3586 .................................................................................................... 2600/3586 .................................................................................................... 2700/3586 .................................................................................................... 2800/3586 .................................................................................................... 2900/3586 .................................................................................................... 3000/3586 .................................................................................................... 3100/3586 .................................................................................................... 3200/3586 .................................................................................................... 3300/3586 .................................................................................................... 3400/3586 .................................................................................................... 3500/3586 ...................................................................................... done Error using util_crop_data_train (line 162) Assertion failed.

    Error in crop_data (line 84) annolist = func_crop_data_train(p, annolistSubset, imgidxs_sub, rectidxs(imgidxs_sub));

    Error in preprocess_single (line 41) annolist2 = crop_data(p);

    The line 162 in 'util_crop_data_train' is the following: assert(numImgs == length(annolist2));

    Could someone please help me to figure out why this happens? Can I simply ignore this assert?

    opened by mhsung 5
  • Make model deterministic

    Make model deterministic

    Hello,

    i am wondering if it is possible to make the model deterministic? I tried to use the TF_CUDNN_DETERMINISTIC flag and tf.set_random_seed(1) but I could not get deterministic behavior. Which part exactly brings stochasticity in?

    opened by sebo361 3
  • No module config

    No module config

    Hello.

    I installed tensorflow and all requirements. I installed pose-tensorflow and followed all steps precicly. I also downlaoded the models with the download_models.py scripts usccessfully. However, when I want to run singleperson.py :

    TF_CUDNN_USE_AUTOTUNE=0 python3 demo/singleperson.py

    I get the following error:

    https://imgur.com/a/G5BzY

    How can I fix it? It looks like the config.py is using python2.7 syntax and changing it to python3 syntax just resulted in mor errors.. What can I do?

    opened by dominikheinz 3
  • nms_grid.c:437:18: fatal error: vector : No such file or directory

    nms_grid.c:437:18: fatal error: vector : No such file or directory

    Hi , I've tried demo_multiperson.py , but failed to run.

    npy_1_7_deprecated_api.h:15:2: warning: #warning "Using deprecated NumPy API, disable it by " "#defining NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-Wcpp] #warning "Using deprecated NumPy API, disable it by " \

    nms_grid.c:437:18: fatal error: vector

    ImportError: Building module nms_grid failed: ["CompileError: command 'x86_64-linux-gnu-gcc' failed with exit status 1\n"]

    I tried a lot of methods, but I still can't solve it. What should I do?

    Thanks!

    opened by a2940519 3
  • python_tf: command not found compile.sh

    python_tf: command not found compile.sh

    According to your instructions, in order to run multiple people demo code, I need to run $ ./compile.sh command. When I run the command, I get the following error message:

    python_tf: not found

    I searched on Google for python_tf. I couldn't find any package named python_tf. Is this an alias that you use in your system? If so, could you please share it?

    Fazil

    opened by fazilaltinel 3
  • image resolution has huge infulence on results

    image resolution has huge infulence on results

    Hi, Thanks so much for this great application. It works perfectly when the test image has a resolution that is similar to the test image, however, it fails with both higher and lower resolution images. Did you notice this? Are there any solutions? Also, how can I test with multiperson using this program? I use python 3.5, tensorflow 1.0 and windows 10. Thanks a lot! Cheng

    opened by Clara85 3
  • segmentation fault (core dumped)  TF_CUDNN_USE_AUTOTUNE=0 python2 demo/singleperson.py

    segmentation fault (core dumped) TF_CUDNN_USE_AUTOTUNE=0 python2 demo/singleperson.py

    ubuntu:18.04 python:2.7.17 gcc:7.5.0 cpu I have installed all the dependencies according to this website: https://github.com/lakshayg/tensorflow-build/ but when I run the test,something is wrong: segmentation fault (core dumped) TF_CUDNN_USE_AUTOTUNE=0 python2 demo/singleperson.py I do not know how to solve this problem. Thank you for your help

    opened by junzifeijing 0
  • solve_nl_lmp function in multiperson/predict.py

    solve_nl_lmp function in multiperson/predict.py

    Hello everyone, I am investigating this source and I can not understand solve_nl_lmp function in multiperson/predict.py. Can you share with me the purpose of function (input/output)? Thank you so much.

    opened by TruongThuyLiem 0
  • Value of mean_pixel

    Value of mean_pixel

    The value of cfg.mean_pixel from util/default_config.py is [123.68, 116.779, 103.939]. Could you please explain this value, because it seems to be rather arbitrary.

    opened by jernsting 1
  • create my own dataset and train

    create my own dataset and train

    I want to train the model on my own dataset but I am not able to figure out the format of the dataset that the model accepts. can anyone help me create the annotate for the training.

    opened by aniketzz 1
  • create my own dataset and train

    create my own dataset and train

    I want to train the model on my own dataset but I am not able to figure out the format of the dataset that the model accepts. can anyone help me create the annotate for the training.

    opened by aniketzz 1
Owner
Eldar Insafutdinov
Eldar Insafutdinov
A project to control Petoi Bittle using human pose

Petoi Bittle Controlled by Pose A project to control Petoi Bittle by human pose Human pose is estimated using MoveNet and TensorFlow Lite YouTube Syst

iwatake 11 Dec 26, 2021
Fast and robust certifiable relative pose estimation

Fast and Robust Relative Pose Estimation for Calibrated Cameras This repository contains the code for the relative pose estimation between two central

null 42 Dec 6, 2022
Android hand detect and pose estimation by ncnn

ncnn_nanodet_hand 1.hand detect:用nanode-m训练了个hand detect模型, 2.hand pose:用CMU的数据集训练了个ghostnet作为backbone模仿pfld的handpose模型 3.推理:handpose.cpp单独检测pose,nano

null 80 Jan 3, 2023
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV Workshop @ CVPR 2021.

MarkerPose: Robust Real-time Planar Target Tracking for Accurate Stereo Pose Estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
Android MoveNet pose estimation by ncnn

ncnn_Android_MoveNet Android MoveNet single human pose estimation by ncnn this project is a ncnn Android demo for MoveNet, it depends on ncnn library

FeiGeChuanShu 93 Dec 31, 2022
CUDA-accelerated Apriltag detection and pose estimation.

Isaac ROS Apriltag Overview This ROS2 node uses the NVIDIA GPU-accelerated AprilTags library to detect AprilTags in images and publishes their poses,

NVIDIA Isaac ROS 46 Dec 26, 2022
Real-Time Neural 3D Hand Pose Estimation from an Event Stream [ICCV 2021]

EventHands: Real-Time Neural 3D Hand Pose Estimation from an Event Stream Project Page Index TRAIN.md -- how to train the model from scratch EVAL_REAL

null 23 Nov 7, 2022
HybridPose: 6D Object Pose Estimation under Hybrid Representation (CVPR 2020)

HybridPose: 6D Object Pose Estimation under Hybrid Representations This repository contains authors' implementation of HybridPose: 6D Object Pose Esti

SONG, Chen 358 Nov 22, 2022
Openvino tensorflow - OpenVINO™ integration with TensorFlow

English | 简体中文 OpenVINO™ integration with TensorFlow This repository contains the source code of OpenVINO™ integration with TensorFlow, designed for T

OpenVINO Toolkit 169 Dec 23, 2022
Android hair/human segmentation demo by ncnn

ncnn_Android_human Android hair/human segmentation demo by ncnn PS:performance maybe poor.it's just a demo:) Reference: 1.https://github.com/Tencent/n

null 23 May 23, 2022
This code accompanies the paper "Human-Level Performance in No-Press Diplomacy via Equilibrium Search".

Diplomacy SearchBot This code accompanies the paper "Human-Level Performance in No-Press Diplomacy via Equilibrium Search". A very brief orientation:

Facebook Research 34 Dec 20, 2022
MasterAI decisively defeated 14 top human Texas hold'em poker professsionals in September 2020.

MasterAI-1.0-1vs1-Limit Introduction MasterAI is an AI poker dedicated to suport n-play (single- or multi-agent) Texas Hold'em imperfect-informatin ga

MasterAI 5 Mar 27, 2022
Android human segmentation by ncnn

ncnn_Android_human_segmentation this project is a ncnn Android demo for RobustVideoMatting, it depends on ncnn library and opencv. https://github.com/

FeiGeChuanShu 111 Nov 30, 2022
Want a faster ML processor? Do it yourself! -- A framework for playing with custom opcodes to accelerate TensorFlow Lite for Microcontrollers (TFLM).

CFU Playground Want a faster ML processor? Do it yourself! This project provides a framework that an engineer, intern, or student can use to design an

Google 331 Jan 1, 2023
KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

KSAI Lite English | 简体中文 KSAI Lite是一个轻量级、灵活性强、高性能且易于扩展的深度学习推理框架,底层基于tensorflow lite,定位支持包括移动端、嵌入式以及服务器端在内的多硬件平台。 当前KSAI Lite已经应用在金山office内部业务中,并逐步支持金山

null 80 Dec 27, 2022
OpenEmbedding is an open source framework for Tensorflow distributed training acceleration.

OpenEmbedding English version | 中文版 About OpenEmbedding is an open-source framework for TensorFlow distributed training acceleration. Nowadays, many m

4Paradigm 19 Jul 25, 2022
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation

Build Type Linux MacOS Windows Build Status OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facia

null 25.6k Dec 29, 2022
Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor"

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 252 Dec 21, 2022
HackySAC is a C++ header only library for model estimation using RANSAC.

HackySAC HackySAC is a C++ header only library for model estimation using RANSAC. Available under the MIT license. Examples Minimal working example fo

Jonathan Broere 1 Oct 10, 2021