TensorFlow Lite, Coral Edge TPU samples.
About
TensorFlow Lite, Coral Edge TPU samples (Python/C++, Raspberry Pi/Windows/Linux).
List of samples.
Name | Language | Description | API | OS |
---|---|---|---|---|
Camouflage | Python | Object detection and camouflage objects by PiCamera. | PyCoral | Linux Windows |
Classify | Python | Image classifilcation by PiCamera or Video Capture. | TF-Lite PyCoral |
Linux Windows |
CenterNet | Python C++ |
CenterNet on-device with TensorFlow Lite. | TF-Lite | Liux Windows |
DeepLab | Python C++ |
Semantic Segmentation using DeepLab v3. | TF-Lite EdgeTPU API |
Linux Windows |
Object detection | Python C++ VC++ |
Object detection by PiCamera or Video Capture. | TF-Lite PyCoral |
Linux Windows |
U-Net MobileNet v2 | Python | Image segmentation model U-Net MobileNet v2. | TF-Lite | Linux Windows |
Super resolution | Python | Super resolution using ESRGAN. | TF-Lite | Linux Windows |
Images
Environment
- Coral Edge TPU USB Accelerator
- Raspberry Pi (3 B+ / 4) + PiCamera or UVC Camera
- x64 PC(Windows or Linux) + Video file or UVC Camera
- Python3
Installation
- OpenCV with OpenCV's extra modules(3.4.5 or higher)
- TensorFlow Lite Runtime (Python quickstart).
- Edge TPU Python library (Get started with the USB Accelerator).